
Key takeaways from 
this whitepaper:

A tech briefing for insurance 
business decision makers: 
understand how LLMs actually work

Why are LLMs so transformative? A 
framework to help you think about 
this new frontier of automation.

Get a practical view of how modern 
LLM based systems are built to support 
your business’ unique needs

Understand reliability concerns and risk 
mitigation techniques

A practical framework to set up LLM 
projects to success

all the basics you should know 
about the Generative AI 
technology that transforms the 
insurance industry

LLMs in 
insurance: the 
executive briefing

it’s time you finally 
understand them



prepare for the ITC 
by really 
understanding the 
technology that 
everyone is talking 
about

If you browse the agenda of the 2024 ITC 
conference, you’ll notice that everyone is 
talking about Generative AI, especially Large 
Language Models. There are hypes, and then 
there are technologies that bring sweeping 
change. Generative AI is not  hype—it has the 
potential to create massive value across 
numerous business areas. This is a 
technology that is likely to define the next 
decade. While it may need some further 
maturing to be viable for critical business 
processes, there are already many areas 
where it’s ready for practical applications. 
Now, you can either leave it to engineers to 
understand how Large Language Models 
really work and shape the future of insurance, 
or you can sit down with a cup of coffee and 
read through this guide. We guarantee that 
after reading, you’ll better understand the 
news, the thematic panels at the conference, 
and be equipped to make more informed 
decisions about investing in LLM-based 
systems. Sooner or later, we’ll all need to 
make those decisions—because this AI 
revolution is coming.

Balazs Fonagy

Chief Strategist  
@Supercharge



why are

Large Language 
Models (LLMs) 
revolutionary?
Large Language Models (LLMs) are the branch of 
Generative AI you're most likely to encounter in your 
daily life through services like ChatGPT. While image 
and sound generation offer intriguing possibilities, 
LLMs' ability to process and generate text makes 
them particularly impactful for the insurance industry, 
one where communication and unstructured data is 
abundant. The best way to think of LLMs is as a new 
skill that computers can tap into: understanding 
human language (written or transcribed speech) and 
generating intelligent responses.

We believe LLMs are truly revolutionary when viewed 
as a new enabler or skill. They open up countless 
new use cases in data processing, automation, and 
human-computer interaction. Instead of focusing on 
hype cycles and headlines about how much 
economic value Generative AI has created so far, we 
urge you to judge a technology's inherent value by 
asking: "Does it create useful opportunities that were 
previously unimaginable?" For LLMs, the answer is a 
resounding yes. While long-term economic impact 
takes time, LLMs' value is best assessed through 
their practical applications, which are numerous and 
impactful.

W
hy are Large Language M

odels (LLM
s) revolutionary?



two revolutions packaged into 
one technology

a new era in 
communicating with 
machines
Since their invention, communicating with computers has 
required humans to translate their commands into the 
machine's abstract language. This process evolved from 
punch cards to command lines and eventually to today's 
graphical user interfaces. However, even the most intuitive 
smartphone interfaces still require users to navigate an 
abstract world of windows, menus, and icons. In essence, 
humans must adapt their communication to suit the machine.


Major tech companies attempted to shift this paradigm with 
natural language-based virtual assistants like Alexa and Siri. 
Yet these tools have proven inflexible and inconvenient. 
Traditional chatbots and voice recognition-based call centers 
so far occasionally helped drive down operational costs but 
usually led to frustrating customer experiences.


Now, with LLMs, a new era is emerging where computers 
make a competent effort to understand the often fuzzy and 
nuanced human language. So far, this mostly takes the form 
of LLM-based chatbots, but we expect radical breakthroughs 
in the next few years as LLMs become the interpreter 
between human and machine. As confirmation of this trend, 
OpenAI recently announced a new service that enables the 
creation of real-time speech-to-speech experiences powered 
by their LLM.

a new era in 
automating human 
intelligence
The story of Machine Learning can be framed as an effort to 
automate processes that do not easily lend themselves to 
machines or software following strict rules—such as 
recognizing images or making predictions based on complex 
patterns. These tasks cannot be broken down into clear, 
deterministic steps. The ultimate goal is to replicate or even 
surpass human intelligence by leveraging computers’ 
advanced processing capabilities. LLMs fit seamlessly into 
this narrative as the latest breakthrough in Machine Learning, 
enabling the automation of aspects of human intelligence that 
were once considered uniquely ours: communication and 
semantic understanding. Practically, we can think of LLMs as 
systems capable of transforming unstructured data into 
structured forms—whether it’s claim reports, policy 
documents, or customer complaints.
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Artificial intelligence (AI)

Machine learning

Image

Generative AI

Deep learning

LLM

what happens inside the LLM?

a super simple explanation
Large Language Models (LLMs) are a type of Generative AI. 
All GenAI models fall under Deep Learning, the most 
advanced area of AI. Neural networks with many layers (called 
‘deep’ layers, which give Deep Learning its name) are trained 
on large amounts of text to learn patterns and generate new 
content. While we won’t go into the details of how neural 
networks work, it helps to understand that they involve a 
massive number of complex mathematical operations. During 
training, these calculations help optimize mathematical 
functions to learn patterns from huge datasets (like books, 
articles, and social media content) and produce accurate 
outputs based on input. 

The enormous computational power needed to train these 
models only became available in the 2020s due to advances 
in graphics processing units (GPUs). To illustrate the immense 
computational power required and the rapid pace of 
innovation in this field, let's consider GPT-4. This model is 
estimated to have 1.8 trillion parameters— mathematical 
weights that the model adjusts during training to learn 
patterns from the data. It was trained over 90 days in 2023 
using 25,000 GPUs, with an estimated cost of $50-100 
million. A year later, thanks to more advanced GPUs from 
Nvidia, the training cost could be reduced by two-thirds.

field of creating intelligent machines

computers that learn from data without explicit programming

training neural networks on large datasets to achieve human 
intuition like results

neural networks that use patterns of previous data to create 
entirely new content

GenAI solutions that focus on text generation

why do we say it is a blackbox?
The complexity of calculations and their abstract mathematical structure make it impossible for 
humans to trace back exactly why a model arrived at a certain prediction. Exactly what patterns 
it picked up during its training and how it arrives at its conclusions remain in the dark recesses 
of the computer, incomprehensible to the human observer.
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imagine the LLM as a text 
prediction engine
Think of a Large Language Model as a text prediction engine. 
It takes input text from the user and, based on patterns it 
learned from training data, predicts what the next word 
should be.


Without additional post-training refinements (called fine-
tuning), the model would merely continue the user’s input—
like completing the next sentence of a story. During fine-
tuning, models learn to interpret inputs as prompts or user 
instructions. This enables them to respond in various useful 
ways instead of just continuing the user’s text: summarizing, 
translating, explaining, and performing other tasks.


Although their behavior has changed as the result of fine-
tuning,  LLMs still generate answers through the same 
statistical process: constructing responses word by word, 
predicting the most probable next word to create a coherent 
and meaningful reply. Understanding the inherently 
probabilistic nature of LLMs helps you grasp some of their 
limitations.

trained
N

ot a 

vast

mentio
ned

lear

ned

brai

n

bu
t a

wou
ld

Unl
ike

answ

ers

sens
e

relationsh

ips

ca
lc

ul
at

i
on

s

fro
m

w
ill 

help

non-

factual

probabilistic

Whe

n

betw

een

larg

e

have a traditional

An LLM is NOT a vast 
database, but a 
“brain” that learned 
billions of patterns

It is important to understand that an LLM does not 
have a traditional memory or vast database of 
facts. 



When you ask “What is an insurance premium?”, it 
can’t look up an exact record storing that 
information. Rather it relies on its internal patterns, 
parameters, and relationships between words that 
it learned from text that mention’s insurance, 
premium and connected concepts. When 
producing answers, it uses probabilistic 
calculations to predict what’s the best next word 
in the sentence based on the context of previous 
words.

The monkey is an  animal

What is the most famous animal 
that climbs on trees in the jungle?

animal = 65% 

example = 15% 

insect = 7% 

mammal = 10% 

organism = 3%

The model is choosing the 
next most likely word for its 
answer. It considers multiple 
words with different 
probabilities. 
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foundation models are what you will build on.

what does that mean?
In most real-life LLM projects, the solution will be built on a foundation model. These models are produced by tech companies, 
spending immense resources on training and fine-tuning them. For most organizations, it wouldn’t be realistic to train models by 
themselves, which is why most decide to pay for a foundation model or use an open-source one. The names that you hear flying 
around, such as various GPT versions (OpenAI), Gemini (Google), Llama (Meta’s open-source model), and Claude (Anthropic), are all 
such foundation models you can build on. These organizations participate in an arms race, where they keep releasing newer and 
newer models, trying to outdo the competition in various performance metrics

Preparing training data

At this point, premier LLMs are 
trained on almost all publicly 
available human-written content 
(terabytes of plain text). There is 
not much more out there that 
could be used.

1 Pre-Training

Can take up to months. The model 
churns through the training data, 
optimizing its billions or trillions of 
parameters (mathematical weights) 
based on the patterns it picks up. 
Enormous computational capacity 
is required, often involving 
thousands of GPUs.

2

Fine-tuning

A team of human experts trains 
the LLM how to behave by 
providing positive and negative 
examples of input-outcome pairs. 
This is where a predictive text 
completion engine transforms into 
a useful robot assistant.

3

the births of a 
foundation model

differences between  
various LLM models
The LLM market is expanding rapidly, with major developers 
offering multiple model versions simultaneously. When 
selecting a model, numerous factors come into play. If you 
intend to run it on your own , you'll likely opt for an open-
source model like Meta's Llama. Pricing is another crucial 
consideration, as operational costs for cutting-edge models 
can escalate significantly as you scale your application. Cloud 
LLM providers typically charge based on the number of 
tokens (word chunks) processed, which includes both the 
input text and the generated output. 


While a comprehensive exploration of all aspects of model 
selection is beyond this guide's scope, we'll introduce you to 
two key performance indicators you'll definitely encounter 
when new models are unveiled.

Parameter count: This refers to the number of mathematical 
weights in the model. A higher parameter count helps the 
model capture more complex patterns and generate more 
nuanced, contextually relevant responses. However, more 
parameters also increase computational costs for both 
training and use. 


Not every task requires the sophistication of a large model like 
GPT-4, which has an estimated 1.7 trillion parameters—a 
smaller, cheaper model can often get the job done.


Context length: Think of this as the model's memory. It 
represents the maximum number of tokens (word chunks, 
where 100 words is about 130 tokens) the model can process 
as input to generate a single response. GPT-4 can handle 
around 12 pages of text, while its variant, GPT-4 Turbo, 
extends this to 300 pages. That might seem excessive for a 
single question, but here's the catch: the input must include 
all relevant context—chat history, system prompts, and 
information retrieved from various sources (like RAG and 
tools). Any information not included in this input will be 
unknown to the model as it generates its response. 


This limitation explains why RAG architectures use external 
vector databases to store vast knowledge repositories. These 
databases enable us to input only the relevant information 
required to answer a question, ensuring it fits within the 
model's limited context window.

The knowledge cut-off date: Once a model's 
training is complete, it doesn't learn new 
information. It needs to be retrained to learn 
from more up-to-date sources.
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how to use LLMs in your

insurance business?
think about LLMs as a massively impactful new 
building blocks for intelligent automation

automation

to create 

business 

value

make
employees 

more 
productive

save cost

standardize 
service quality improve 

access and 
reaction 

time

enable 
scaling

support 
decision 
making

At its core, the pursuit of Artificial Intelligence is about 
automating increasingly sophisticated activities within 
business processes. Even forecasting and decision-support 
systems are essentially automating human analysis, 
supercharged with the massive computational power of 
computers. The end result is either the augmentation of 
human capabilities or, in some cases, the complete 
replacement of humans in certain processes through 
automated workflows.


Most AI business cases can be distilled down to three core 
benefits: machines can perform activities cheaper, faster, or 
with better outcomes—or any combination of these three. 
These foundational advantages can be combined to yield 
more complex benefits such as scalability (cheaper and 
faster) or process standardization (faster with more consistent 
outcomes). 

As AI technologies advance, the range of processes that can 
be automated or augmented continually expands. AI 
becomes capable of replacing more facets of human 
intelligence or even surpassing it, delivering superior 
outcomes in areas like pattern recognition within large 
datasets. You might think of it as an ever-expanding box of 
building blocks: every new piece (AI capability) allows us to 
construct more complex and sophisticated systems. And 
LLMs are extremely important new components, redefining 
what can be automated.
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the new building block that can replace 
an other layer of human intelligence
We find it a useful framework to think about LLMs as a way to 
automate those layers of human intelligence that feel the 
most humane and intuitive. Here, we present the most 
important new capability building blocks that LLMs give you 
to build into your workflows. 

LLMs can turn unstructured 
data into structured 
information and summaries
LLMs can take human-generated content—such as 
written claim reports or transcripts of doctors' visits
—and extract information that can be fed into 
processes requiring structured input. For example, a 
policyholder's written incident report can be 
transformed into structured claims data (date, time, 
location, type of incident, severity, etc.) and fed into 
a claim management system. Or a patient’s complex 
medical history documented across multiple 
doctors’ notes, lab reports, and hospital transcripts 
can be turned into a  well-structured, chronological 
timeline of the patient’s medical history. 

LLMs enable a new 
information search 
experience 
LLMs act like highly skilled librarians or research 
assistants, helping humans find answers from vast 
bodies of knowledge, including thousands of differently 
formatted and structured documents. Traditionally, 
humans had to frame queries in ways machines could 
understand, but with LLMs, the process is more flexible 
and conversational, similar to asking a human librarian. 
For example, an adjuster handling a complex 
commercial claim could quickly find past similar cases 
and relevant regulatory guidelines on the machinery 
used onsite at the claimants facilities.

LLMs can emulate human 
communication
LLMs can be used to replace human representatives in 
a multitude of use cases, or to turn static content 
consumption into a human-like conversational 
experience. This can mean virtual customer service 
agents that are miles ahead of the inflexible chatbots of 
yesterday. Another example can be an SME company's 
conversational onboarding and risk assessment 
experience.

LLMs can act as reasoning 
and decision making agents
This capability is the most experimental and 
challenging to reliably harness in LLMs, yet it most 
closely simulates human intelligence. LLMs can 
understand context, interpret nuanced information, 
and perform complex reasoning by deciphering 
language and meaning. They recognize patterns, draw 
inferences, generate insights, and even make 
decisions (such as performing a web search). However, 
LLM’s “black box” nature makes it difficult to use this 
capability for business-critical applications that require 
consistent and predictable performance.


Despite these challenges, the potential gains are huge, 
possibly leading to human-like automation 
orchestrators. This is why much research is focused on 
understanding LLMs’ internal workings and creating 
stricter controls and guardrails.  


OpenAI is clearly pursuing advanced reasoning, a key 
feature of their newest model, GPT-o1. It automatically 
breaks problems into multi-step, chain-of-thought 
reasoning: understanding the question, structuring the 
problem, testing strategies, and then summarizing the 
answer. By also revealing this process, the model’s 
internal logic becomes clearer, reducing its “black box” 
nature.

It's important to note that the examples we provide would only work if a Large Language Model is used as part of a larger 
system. This in itself is an important lesson: LLMs are not magical solutions, but rather powerful new building blocks that 
need to be smartly leveraged within digital tools or data platforms.

The new
 building block
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how LLMs are 
customized to your 
unique use case?
from foundations to a valuable 
solution for YOUR business
Using ChatGPT or similar models shows the impressive raw 
power of large language models, but without customization, 
they are almost never suited for real-world business 
challenges. It’s like hiring a smart graduate who still needs to 
learn your company’s specific processes and information. 
They need training and context to deliver real value. 


Despite Generative AI's rapid evolution, certain solution 
architectures have begun to gain consistent popularity due to 
their practicality. In the following pages, we’ll explore these 
options to give you a clear, actionable understanding.


Note: We focus on solutions using cloud bases model-as-a-
services and don't delve into the less common case of on-
premise LLMs.

We'll explore the following concepts, ordered by their 
practical impact in typical use cases, starting with the most 
significant.

The impactful basics:  
Prompt engineering and model settings

Arming the LLM with external knowledge: 
Retrieval Augmented Generation (RAG)

Arming the LLM with tools: 
LLM Agents

Adapting the model to your context: 
Finetuning

Prompt 
Engineering
How the machine whisperers work.
A prompt is a written question or request we give to an 
LLM. When an LLM produces a response to a prompt, it 
also takes into account the  context of the request, that 
consists of three main elements besides the prompt itself�

� the history of the conversation (think of it as the chat 
history�

� the system prompt: the written instructions that govern 
the workings of the LL�

� information gathered with tools or from embedded 
documents (we will get there in later sections)

System prompts are at the core of a custom LLM solution. 
When someone unfamiliar with the technology first 
encounters the lengthy instructions behind an LLM 
performing complex operations, they're often quite 
surprised. Controlling the LLM you'll find elaborate 
instructions in plain English. These instructions detail 
expected outcomes, desired behavior, contextual 
information and things we explicitly want the model to 
avoid. 


Writing good system prompts requires equal part creativity 
and engineering mindset. The engineering part comes in 
with the rigorous evaluation and iteration cycle that leads to 
an LLM producing accurate results and with the many 
established prompting techniques the designer can 
leverage. 

Model settings
There are several parameters developers can configure in an LLM, most of which impact its probabilistic behavior and 
slightly alter its output. One of the most well-known parameters is “temperature.” This controls the model’s creativity: a value 
close to 0 makes it consistently choose the most probable next word, resulting in more predictable text. A higher value, 
closer to 1, allows it to select less likely words, creating more varied and creative results. For business use cases, we 
typically use very low temperatures to ensure the LLM behaves predictably and reliably.

Design your use case 
specific custom system

Pre-training and fine-
tuning the foundation 
LLM model by its 
developer
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Few Shot Prompting 
In few-shot prompting, the model is provided with a 
few examples of desired or undesired outputs.

The idea here is that the model learns from the 
examples and provides more accurate answers in 
the future. 

Zero Shot Prompting: In zero-shot prompting, the 
model is given a task without any desirable 
examples to guide its response.

“Categorize the following claims as either ‘property 
damage’ or ‘bodily injury’:


	1.	A driver breaks their arm in a car accident.


	2.	A tree falls on a house.


	3.	A pedestrian is hit by a car.

Chain-of-thought prompting: 
This technique instructs the model to break down 
its answer into logical steps, often improving 
reasoning and accuracy.

OpenAI's newest model, GPT o1, focuses exactly 
on this kind of step-by-step logical reasoning. 
This suggests that the industry pioneer believes 
such an approach could be a promising direction 
for developing LLMs capable of handling complex 
human intellectual challenges.

Prompting techniques

While we won't provide an exhaustive overview of prompting techniques, examining a few popular examples will give you a clearer 
understanding of how the field works. These techniques highlight the uncanny human-like nature of LLMs - they would be equally 
effective instructions to help a human intern improve their performance on a task.

Instructions
(prompt 
engineering)

Uploaded 
knowledge
(RAG, embedding)

User prompt

Response

Context
(chat history + 
instructions)

Tools & actions
(agent)

“Categorize the following claims as either ‘property 
damage’ or ‘bodily injury’.   

Here are some examples to help you understand the 
difference. 


Example 1: “Claim: A vehicle is damaged after hitting 
a fence.


Correct Category: Property damage.”


Example 2: “Claim: A passenger sustains whiplash 
after a rear-end collision.


Correct Category: Bodily injury.”

“Categorize the following claim: ‘A car runs into 
a lamppost, causing significant damage to both 
the car and the lamppost.’


Explain your reasoning step by step before 
providing the category.”


Model Output:


“Let’s break this down.


	1.	The claim involves a car hitting a lamppost.


	2.	‘Significant damage’ is mentioned, referring 
to the car and lamppost, which are physical 
objects.


	3.	There’s no mention of anyone being injured.


	4.	Since the damage is only to property, this 
claim is classified as property damage.


Final category: Property damage.”
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LLM Agents
using tools opens up the world

The use of tools was a key turning point in humanity’s 
evolution from animal to Homo sapiens. Similarly, equipping 
LLMs (Large Language Models) with tools can massively 
enhance their usefulness. As the name suggest, the idea is 
that they become agents, capable of reasoning and acting 
autonomously to achieve specific goals. In most practical 
cases their decision-making is strictly limited to selecting the 
appropriate tool, formulating the right queries, and 
incorporating the tool’s outputs into their responses.


This area is still highly experimental, some believing that this 
autonomy can be pushed much further as model’s become 
better in reasoning and self-reflection. But the use cases we 
discuss here represent commonly adopted practices in 
custom LLM-based systems.

How Tools Extend LLM 
Capabilities



Tools enable LLMs to perform tasks beyond their own 
capabilities. These are typically applications that the LLM 
interacts with through APIs. The LLM can often choose from 
multiple tools based on what appears most effective for 
achieving its goal. The main practical challenge with LLM 
Agent systems is their speed: the model may spend 
considerable time deciding what to do, and then the chosen 
tool (such as running a Google search) can also take time to 
execute. This time factor is crucial to consider when 
evaluating whether an Agent system is a viable solution.

Here are a few popular examples�

� Web Search: LLMs can access up-to-date data by using 
tools like Google search (even ChatGPT offers this 
feature). This enables the LLM to search the web and use 
information found on websites, much like a human would. 
However, LLM-generated answers based on web 
searches can sometimes miss the mark because selecting 
the most credible source and extracting the relevant 
information is still a challenge for LLMs. A key insight is 
that LLM accuracy improves with structure: If the LLM is 
restricted to a pre-vetted range of websites, the results 
are often more accurate and reliable. The trade-off, of 
course, is less flexibility for questions that fall outside the 
scope of those sites�

� Access to Public and Internal Databases: LLMs can be 
programmed to access and utilize various databases and 
spreadsheets. For instance a travel insurer’s virtual 
assistant could retrieve information from a database 
containing partner hospitals worldwide and their available 
services�

� Access to Specialized Tools: Certain tasks, such as 
complex calculations, are best handled by specialized 
systems rather than LLMs. For example, an LLM might be 
instructed to use the WolframAlpha API for precise 
mathematical calculations. An assistant supporting 
adjusters could be given access to the policy 
management system—with appropriate access control 
safeguards in place—to enhance its responses with real-
time policyholder data�

� Additionally, the LLM could be connected to other expert 
AI systems, consulting them for specialized knowledge in 
specific domains.

user

Database 
query 

LLM agent

Is connected 
to many tools to 
execute tasks 

Python

Company 
database
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RAG
working from reliable sources of truth

Don’t be put off by it’s technical sounding name: RAG starts to enter the everyday language of talking about LLMs as this is one of 
the most often used architecture to create reliable systems that can be used to solve real-world business problems. RAG stands for 
Retrieval Augmented Generation: the LLM can search and retrieve information from a an external vector database and use it to 
augment the input context of the response it generates.


Vector databases have been used for semantic search for quite some time, and with the rise of LLMs, they became a natural fit to 
augment these models’ capabilities. Any kind of textual document can be embedded into a vector database, enabling fast and 
efficient retrieval based on meaning (hence semantic) rather than exact word matches. For example, a search for “insured” would 
also retrieve relevant information about “policy holders.” The retrieval mechanism finds relevant passages, and the LLM 
incorporates this information into its generated response to provide a more accurate and  informed answer.

Response
Augmented 

promptQuestion

Retrieval 
query

Retrieved 
texts

Vector database of 
domain specific 
documents

LLM

RAG increases domain specific accuracy by magnitudes



RAG systems can dramatically enhance the reliability of LLMs. Rather than relying on the model's pre-trained knowledge—
derived from millions of often unvetted sources—we can ensure it works from carefully curated documents. Imagine an insurance 
agent answering questions about coverage: would you prefer they rely on hazy memories from a months-old briefing, or consult 
the insurance carrier's program manual?

In this example, we'd only need to use a single embedded document: the carrier's program manual (likely divided into thematic 
chunks to improve retrieval accuracy). This is a simple case, but more complex systems can work with tens of thousands of 
embedded documents—such as all scientific articles on parametric insurance from the last decade. These advanced systems 
might even include data pipelines to automatically expand the database as new content becomes available. Sophisticated use 
cases employ algorithms and document labeling to help the retrieval mechanism decide which relevant documents to "pull off the 
shelf" for searching.

Policy holder

Policy

Agreement

Customer

Insured
Insuree Vector databases represent words or documents as points 

in a multidimensional space—often with hundreds or 
thousands of dimensions. Points that are close together in 
this space have similar meanings.


The illustration shows a simplified version of this concept 
in just three dimensions.
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Fine-tuning
the heavy lifting:

retraining the model for your specific context

Fine-tuning models is the most time-consuming and 
expensive way of building custom LLM systems. 
Fine-tuning means that by feeding additional training 
data, a foundation model's parameters (the 
mathematical formulas representing all the learned 
patterns) irreversibly change, essentially creating a 
new unique model version. Even though popular fine-
tuning methods only retrain the last couple of layers 
of the neural network (GPT consists of 120 layers!), 
this process is still very resource-intensive for three 
reasons:  

1 It necessitates building up high-quality labeled 
training data consisting of thousands of examples. 
For instance, if we want to build an LLM-based 
decision-making support system for claim adjusters, 
it could make sense to retrain the model with 
historical claims data, including inputs and decisions. 
This would help it recognize patterns and predict 
outcomes more reliably than a generic model. This 
exercise would likely start with a month-long process 
of organizing and cleaning historic claims data to 
make it suitable for training purposes.


2: The actual training process is computation 
intensive, as the model updates its internal 
parameters while processing the examples. This is 
usually an iterative process that consists of training 
and validation rounds, until the desired accuracy is 
reached. 


3. After fine-tuning, you now have a custom LLM 
model that needs to be operated exclusively for 
you. This means you can't use standard LLM-as-a-
service APIs where the model is shared among 
multiple users. You either need to host the model 
yourself (which comes with significant infrastructure 
and MLOps costs), or opt for a dedicated instance 
from an LLM provider. Some platforms, like Microsoft 
Azure, offer managed dedicated instances for fine-
tuned models, but this  incurs much higher costs 
compared to using shared LLM resources. 
Additionally, if newer, cheaper, and more capable LLM 
models become available and you want to leverage 
one of them, you'll need to fine-tune it again.

Why would you fine-tune a 
model?



There are many reasons to fine-tune a model, but due 
to its cost and complexity, it's usually a "last resort" 
when other techniques seem insufficient to produce 
acceptable outcomes.  The most common reasons to 
consider fine-tuning a model are�

� Better handling of Domain-Specific Language 
(e.g., medical, legal, financial, insurance). Just 
as with human colleagues, if someone isn't 
familiar enough with a field's technical terms, 
accurately interpreting documents becomes 
impossible. Fine-tuning can help an LLM build a 
solid grasp of niche domain language. This is 
especially important for non-English use cases, 
where the LLM's understanding of niche terms in 
other languages may be particularly poor�

� Improving Performance on Specific Tasks. An 
LLM's accuracy can significantly improve when 
performing certain activities, like claim adjustment, 
if it receives additional training on proprietary data 
that allows it to learn decision-making patterns�

� Enforce certain approach or principles: Humans 
don’t always agree on things and viewpoints can 
evolve in time. LLMs may be pre-trained on 
diverse viewpoints. Fine-tuning can ensure 
consistent use of a preferred approach, such as 
prioritizing customer satisfaction in disputed 
claims. However, effective prompting may often 
achieve similar results�

� Updating the model's knowledge: The model's 
knowledge cut-off date is always somewhat in the 
past, leaving it unaware of certain new 
developments (such as the EU’s AI Act). Additional 
training can bring its knowledge up to date.


As this is a high-level technology briefing, we won't delve into the possible advantages of fine-tuning smaller models for specific use 
cases instead of using more generic large models.
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choose the 
tech that gives 
the most bang 
for your buck

The product development principles of building LLM-
based systems are not different from any other digital 
product: the best ROI can be achieved by finding the 
simplest possible solution that produces the desired 
results. The below diagram reflects our real-life 
experiences: in almost every project, we managed to 
produce good enough results to automate a process 
by building a system around carefully crafted system 
prompts, thoughtful use of RAG, and occasionally 
augmenting the LLM with tools.

Fine-tuning can significantly increase the cost and 
complexity of a project. It not only raises initial 
development expenses but also adds to the ongoing 
operational costs due to the need for maintaining the 
customized model. While in some cases it is 
necessary—particularly when domain-specific 
expertise or highly customized outputs are required—
our first approach should always be to design the 
system without it. There are many ways to make 
prompting and the RAG pipeline more sophisticated, 
and these methods often yield a much better ROI than 
jumping straight to fine-tuning. However, for 
specialized tasks, such as in legal, medical, or other 
high-precision industries, fine-tuning might offer the 
reliability needed, despite the added complexity.

This illustration serves as a visual representation of a conceptual framework rather than an accurate depiction of actual accuracy 
improvements.

task 
accuracy

100%

0%
zero-shot prompts few-shot prompts RAG + few-shot 

prompting
fine-tuning effort/complexity
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Businesses began using software to automate and enhance 
processes over half a century ago, and today, digital 
solutions permeate both our professional and personal lives. 
Through these experiences, we’ve come to expect that 
computers, aside from occasional bugs, produce predictable 
results by following rigid rules. Most traditional software is 
deterministic—“if this, then that.” In contrast, Large 
Language Models (LLMs) are probabilistic. They generate 
responses based on statistical patterns learned from vast 
datasets, introducing variability—given the same input, an 
LLM might provide different responses. While parameters 
like temperature can reduce this variability, perfect 
consistency remains difficult due to the complexity of these 
models and their probabilistic nature.


LLMs are designed to emulate human communication, 
which is naturally flexible, so identical inputs rarely occur in 
real-world use. In short, LLMs are less predictable than 
traditional software, but far more adaptable. This requires a 
shift in mindset—approaching LLMs as flexible, yet 
sometimes unpredictable systems, much like managing 
human employees.

Humans make mistakes because we aren’t machines. We can 
be tired, inattentive, distracted, or misjudge situations due to 
cognitive biases. Many of our decisions are based on mental 
forecasts, which are inherently probabilistic. When managing 
employees, we expect this variability and, in return, value their 
ingenuity and flexible problem-solving.  Unsurprisingly, as we 
strive to create AIs that mimic human intelligence’s flexibility, 
we introduce a level of unpredictability into our systems.


To manage the inherent unreliability of LLM-based systems, 
there are two key strategies�

�� Choose appropriate use cases where some error or 
variability can be tolerated without major impact�

�� Mitigate unreliability by�
�� 	Implementing guardrails, such as content filtering or 

human-in-the-loop systems, to ensure the LLM 
operates within defined boundaries�

�� 	Rigorously testing and evaluating the model’s 
performance�

�� 	Ensuring comprehensive observability to monitor 
outputs, identify biases, and continuously improve 
reliability.

Choosing the right use case



LLMs aren’t magical tools for every problem. For instance, 
more predictable ML solutions are often better for 
categorization tasks. When LLMs seem like the right fit, 
consider the following�

� What’s the cost of unreliability? This can include 
financial, reputational, and legal risks�

� 	What’s the current error rate? If humans perform the 
task, we may already accept some level of error�

� 	How do social factors affect our view of mistakes? We 
tend to forgive human errors, but machine errors can feel 
less acceptable (like with self-driving cars)�

� If more mature technologies can solve the problem, 
though with less ideal outcomes, does the LLM solution 
offer enough extra value to justify the risks?

demystifying the 
reliability of LLMs

No-brainer
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impact of unreliability

tantalizing 
dilemma

Why bother? don’t touch it

reliable
adjective

Someone or something that is reliable 
can be trusted or believed because he, 
she, or it works or behaves well in the 
way you expect //  Cambridge Dictionary
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Factuality issues and hallucination. In most business 
contexts, the biggest risk is simply that the LLM's 
answer is not based on facts. You've likely heard about 
LLMs' tendency to produce hallucinations, so let's 
demystify that: a hallucination is an answer generated 
without clear factual foundations in the training data or 
external sources. Models are fundamentally built to 
provide answers and find patterns even if little or none 
exists, and they struggle to simply say "I don't know." 


However, factual errors can emerge without any 
hallucination in play: the LLM may have learned a 
pattern from a false source, misinterpreted the question, 
or failed to find or comprehend relevant information 
when working with external documents. 


The greatest risk lies in the variability factor and the 
smooth-talking nature of LLMs. If most of their 
responses are factually correct, and the incorrect ones 
are delivered as plausible-sounding, contextually 
relevant explanations, it becomes very difficult for 
humans to spot these errors. This is especially true 
when incorrect information is "sandwiched" between 
factually correct statements (intermittent errors). It's 
easy to see how this underlying doubt can undermine 
the system's overall credibility and value. (The problem 
of hidden defects is not unknown in other areas of 
quality assurance.)

1. Ensuring the 
model works 
from accurate 
information

2. Ensuring the 
model 
processes the 
information 
correctly

3. Double-
checking 
responses by 
other systems

4. Users

The solutions:


Most of the work that goes into an LLM based system 
aims to ensure factually correct answers—this isn't 
something we just mitigate in later stages of a project. 
Ensuring factual accuracy is an ongoing process that 
spans the entire development lifecycle.


An essential first step for reducing hallucinations is to 
instruct the model to admit when it doesn’t have 
sufficient information, such as saying ‘I don’t know.’ 


A next crucial concept is providing "ground truth" to 
the model beyond its knowledge from original 
training. Depending on the system's scope, certain 
ground truth information can be part of the system 
prompt. For example, a policy explanation chatbot 
could receive a list of industry terms with their exact 
definitions to use in its replies.


RAG is a popular and more scalable method for 
equipping LLMs with quickly accessible, curated 
external information. It provides a strong “ground truth” 
by having the LLM search provided documents and 
base its answers on verified data, rather than relying on 
what it learned during training. This shifts the LLM’s role 
to reasoning and communication, while the knowledge 
is stored in an external vector database. To build 
effective RAG systems, three factors are key: carefully 
curating and preparing the knowledge base, optimizing 
the retrieval process so the LLM can find relevant 
information for each use case, and giving effective 
instructions on how to use that information. As with 
most LLM systems, this process requires numerous 
rounds of evaluation and iteration by the designers.


Post-processing is an advanced method to ensure 
factual accuracy. While RAG focuses on supplying the 
LLM with the right source of truth before generating the 
response, post-processing double-checks the LLMs 
responses after it has been generated and before they 
are sent to the user. It effectively works as a censor with 
veto rights. This is an exciting field that is advancing 
fast and post-processors can be all kind of additional 
systems, like other AI models.

increasing the reliability 
of our LLM system

Reliability in LLMs means how consistently the model provides accurate and expected answers. It reflects how well the 
model avoids mistakes, stays factual, and delivers dependable results across different situations. Ensuring reliability 
involves using multiple strategies, but the first step is to make reliability measurable—“if you can’t measure it, you can’t 
improve it.” At a high level, ensuring reliability means building a robust structure for evaluation, monitoring and 
intervention, along with continuous adjustments to gradually improve performance. Just like optimizing human 
employees, an LLM system’s outputs can always be refined further, though there is eventually a point of diminishing 
returns. 

guardrails and other 
effective mechanisms
The aptly named guardrails stop our system from straying 
into dangerous or off-limits areas. What are these areas?  
To name the main offenders:
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Adversarial prompting/prompt 
injection


Similar to social hacking, this involves 
tricking the LLM into performing 
actions beyond its purpose. The main 
issue is that LLMs interpret user 
inputs as instructions, not just 
questions. With the right malicious 
prompts, users can lead them astray, 
potentially exposing sensitive 
information from an accessible 
database or producing responses that 
harm a business’s public image. (For 
example, imagine the fallout if a 
carrier’s chatbot gave advice on 
insurance fraud and it was shared on 
social media.) This poses a serious 
risk for customer-facing or externally 
accessible tools.

Solutions:


Clear System Prompts: Craft the system prompt to include explicit instructions 
that guide the LLM to refuse inappropriate requests politely and avoid sharing 
sensitive information.  

Input validation: A separate, specialized system component can validate and 
filter incoming user inputs, specifically looking for signs of adversarial 
prompting. As with fraud detection, flagging false positives can be extremely 
annoying for users, so these systems must be carefully configured to avoid 
being overreactive.


Secure design: As with any other software, security best practices should be 
followed. A crucial principle is to connect the system only to APIs that contain 
data essential for performing its duties (principle of least privilege).


Post-processing: Similar to ensuring truthfulness, responses can be analyzed 
and potentially intercepted by another system before they're sent to the user. 
This check ensures they don't contain sensitive information or content irrelevant 
to the use case.

Harmful or risky answers


There are topics we want the LLM to 
stay clear of. This generally includes 
anything that goes beyond its scope 
(an insurance bot shouldn't give 
healthcare advice), but can also 
include landmine topics within its own 
specialized field. Users are not  aware 
of what we consider off-limits 
because of legal, reputational, or 
operational risks and they may 
prompt the LLM to discuss it. There 
are also obvious behaviors that we 
want the system to avoid, like using 
toxic language or being passive-
aggressive.

Solutions:


The solutions strategies don’t differ much from the previously introduced 
methodologies. 


Prompting: The system prompt gives the LLM its marching orders, often 
specifying the conversation’s permitted scope and topics to avoid. As long as 
users don’t intentionally try to mislead it (see adversarial prompting), this keeps 
the LLM on track in most cases.


Post-processing: Various tools can verify the LLM’s answer before it’s sent to 
the user. This may involve another LLM focused on staying on-topic, specialized 
tools like Nemo Guardrails, or traditional NLP models checking for certain 
expressions (like profanity). If necessary, the LLM can be asked to revise its 
response, or a predefined reply can be sent. Keep in mind, the model’s fine-
tuning by it’s developer already aims to minimize harmful content, so LLMs 
come with some built-in decorum.

Biases 
In an LLM, biases happen when the 
model learns patterns from its training 
data that favor certain ideas, groups, 
or perspectives. This can cause the 
model to produce unfair or 
unbalanced responses, such as 
reinforcing stereotypes or overlooking 
important viewpoints. As a result, its 
answers might reflect the same 
biases present in the data it was 
trained on.

Solutions  

AI Ethics is a rapidly expanding field and companies must pay increasing 
attention to this aspect to avoid reputational risks and potential legal 
consequences. Ensuring that training data comes from varied and balanced 
sources is primarily the foundation model developer's responsibility. However, if 
we fine-tune the model with our own data, we must pay attention to the same 
aspect. 


Even without fine-tuning, biases can emerge from system design choices, such 
as system prompt formulations. Extensive testing and evaluation for biases are 
required on every LLM-based system. Once a bias has been identified, the 
previously discussed strategies can be used to set up effective guardrails for its 
mitigation.
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evaluating the performance 
and accuracy of LLMs

� Reliability and factuality: Can we trust the answers 
the system provides? To figure out why it might give 
incorrect answers, we need to look at how the 
system works step by step. How well does it find 
information from external sources? Are we selecting 
the most relevant pieces of information? Does the 
LLM use this information effectively to produce 
helpful responses? We can measure and improve 
each of these aspects�

� Relevance: Do the system’s responses truly address 
the user’s questions and context? Are the outputs 
really meaningful responses?


� Coverage: Can the system provide useful responses 
across all scenarios within the target use cases�

� Fluency and Coherence: Are the LLM’s answers easy 
to understand? The responses should be well-written 
and make sense to the user without confusion�

� Conversation Relevancy: The system's ability to 
remember and utilize context, such as the chat 
history, which is essential for maintaining genuine 
conversations. 


There are numerous additional aspects worth evaluating 
especially focused on safety, and ethical operations.

How do we define a useful LLM system?



Performance in IT often refers to processing speed and response time. These can be important for LLM systems as well, because 
long response times can radically degrade the user experience. But when we talk about an LLM system’s performance, we’re not 
just talking about speed, we are more interested in accuracy. We break down what makes it a “valuable business tool” into specific 
qualities that we can measure and improve. 



Below are some key qualities we often consider to measure accuracy, but this list is far from exhaustive. Each of these can be 
further detailed into specific contributing factors that we can measure and optimize—a process called LLM evaluation.

We can break down the performance and accuracy 
evaluation of an LLM-based system into three types of 
testing mechanisms�

�� Expert or internal evaluation performed by humans: 
The team working on the tool continuously tests the 
system's outputs and adjusts the design to generate 
more useful responses. By formulating structured test 
cases (input, expected output, actual output) and 
tracking the previously explained factors, this process 
evolves into a structured scientific activity�

�� Automated evaluation with specialized tools: An 
increasing number of tools are available to run 
automated tests that continuously evaluate the system 
down to very granular performance indicators. 
DeepEval is a promising analytical tool with sound 
scientific foundations that we have successfully used 
in past projects.

�� End-user feedback loop: If you’ve used ChatGPT, 
you’ve likely seen the thumbs-down option for 
unsatisfactory responses. Similar features can be 
added to any LLM tool. For internal tools or early 
versions, feedback can be more detailed, with options 
to select failure categories or add comments. The 
team should analyze this input to improve response 
quality. Creating value for end users is the ultimate 
validation of the solution.


Despite rapid advancements in automated evaluation of 
LLM-based systems, with new tools and paradigms 
emerging monthly, human evaluation remains by far the 
most crucial at this stage.


LLMs aim to automate and augment the most 
sophisticated areas of human intelligence. Only 
humans can be the final judge of their most crucial 
success metric: whether the outputs are meaningful 
and valuable for the target use case.
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