
Key takeaways from
this whitepaper:

A tech briefing for insurance
business decision makers:
understand how LLMs actually work

Why are LLMs so transformative? A
framework to help you think about
this new frontier of automation.

Get a practical view of how modern
LLM based systems are built to support
your business’ unique needs

Understand reliability concerns and risk
mitigation techniques

A practical framework to set up LLM
projects to success

all the basics you should know
about the Generative AI
technology that transforms the
insurance industry

LLMs in
insurance: the
executive briefing

it’s time you finally
understand them

prepare for the ITC
by really
understanding the
technology that
everyone is talking
about

If you browse the agenda of the 2024 ITC
conference, you’ll notice that everyone is
talking about Generative AI, especially Large
Language Models. There are hypes, and then
there are technologies that bring sweeping
change. Generative AI is not hype—it has the
potential to create massive value across
numerous business areas. This is a
technology that is likely to define the next
decade. While it may need some further
maturing to be viable for critical business
processes, there are already many areas
where it’s ready for practical applications.
Now, you can either leave it to engineers to
understand how Large Language Models
really work and shape the future of insurance,
or you can sit down with a cup of coffee and
read through this guide. We guarantee that
after reading, you’ll better understand the
news, the thematic panels at the conference,
and be equipped to make more informed
decisions about investing in LLM-based
systems. Sooner or later, we’ll all need to
make those decisions—because this AI
revolution is coming.

Balazs Fonagy

Chief Strategist  
@Supercharge

why are

Large Language
Models (LLMs)
revolutionary?
Large Language Models (LLMs) are the branch of
Generative AI you're most likely to encounter in your
daily life through services like ChatGPT. While image
and sound generation offer intriguing possibilities,
LLMs' ability to process and generate text makes
them particularly impactful for the insurance industry,
one where communication and unstructured data is
abundant. The best way to think of LLMs is as a new
skill that computers can tap into: understanding
human language (written or transcribed speech) and
generating intelligent responses.

We believe LLMs are truly revolutionary when viewed
as a new enabler or skill. They open up countless
new use cases in data processing, automation, and
human-computer interaction. Instead of focusing on
hype cycles and headlines about how much
economic value Generative AI has created so far, we
urge you to judge a technology's inherent value by
asking: "Does it create useful opportunities that were
previously unimaginable?" For LLMs, the answer is a
resounding yes. While long-term economic impact
takes time, LLMs' value is best assessed through
their practical applications, which are numerous and
impactful.

W
hy are Large Language M

odels (LLM
s) revolutionary?

two revolutions packaged into
one technology

a new era in
communicating with
machines
Since their invention, communicating with computers has
required humans to translate their commands into the
machine's abstract language. This process evolved from
punch cards to command lines and eventually to today's
graphical user interfaces. However, even the most intuitive
smartphone interfaces still require users to navigate an
abstract world of windows, menus, and icons. In essence,
humans must adapt their communication to suit the machine.

Major tech companies attempted to shift this paradigm with
natural language-based virtual assistants like Alexa and Siri.
Yet these tools have proven inflexible and inconvenient.
Traditional chatbots and voice recognition-based call centers
so far occasionally helped drive down operational costs but
usually led to frustrating customer experiences.

Now, with LLMs, a new era is emerging where computers
make a competent effort to understand the often fuzzy and
nuanced human language. So far, this mostly takes the form
of LLM-based chatbots, but we expect radical breakthroughs
in the next few years as LLMs become the interpreter
between human and machine. As confirmation of this trend,
OpenAI recently announced a new service that enables the
creation of real-time speech-to-speech experiences powered
by their LLM.

a new era in
automating human
intelligence
The story of Machine Learning can be framed as an effort to
automate processes that do not easily lend themselves to
machines or software following strict rules—such as
recognizing images or making predictions based on complex
patterns. These tasks cannot be broken down into clear,
deterministic steps. The ultimate goal is to replicate or even
surpass human intelligence by leveraging computers’
advanced processing capabilities. LLMs fit seamlessly into
this narrative as the latest breakthrough in Machine Learning,
enabling the automation of aspects of human intelligence that
were once considered uniquely ours: communication and
semantic understanding. Practically, we can think of LLMs as
systems capable of transforming unstructured data into
structured forms—whether it’s claim reports, policy
documents, or customer complaints.

03

W
hat happens in the blackbox?

04

Artificial intelligence (AI)

Machine learning

Image

Generative AI

Deep learning

LLM

what happens inside the LLM?

a super simple explanation
Large Language Models (LLMs) are a type of Generative AI.
All GenAI models fall under Deep Learning, the most
advanced area of AI. Neural networks with many layers (called
‘deep’ layers, which give Deep Learning its name) are trained
on large amounts of text to learn patterns and generate new
content. While we won’t go into the details of how neural
networks work, it helps to understand that they involve a
massive number of complex mathematical operations. During
training, these calculations help optimize mathematical
functions to learn patterns from huge datasets (like books,
articles, and social media content) and produce accurate
outputs based on input.

The enormous computational power needed to train these
models only became available in the 2020s due to advances
in graphics processing units (GPUs). To illustrate the immense
computational power required and the rapid pace of
innovation in this field, let's consider GPT-4. This model is
estimated to have 1.8 trillion parameters— mathematical
weights that the model adjusts during training to learn
patterns from the data. It was trained over 90 days in 2023
using 25,000 GPUs, with an estimated cost of $50-100
million. A year later, thanks to more advanced GPUs from
Nvidia, the training cost could be reduced by two-thirds.

field of creating intelligent machines

computers that learn from data without explicit programming

training neural networks on large datasets to achieve human
intuition like results

neural networks that use patterns of previous data to create
entirely new content

GenAI solutions that focus on text generation

why do we say it is a blackbox?
The complexity of calculations and their abstract mathematical structure make it impossible for
humans to trace back exactly why a model arrived at a certain prediction. Exactly what patterns
it picked up during its training and how it arrives at its conclusions remain in the dark recesses
of the computer, incomprehensible to the human observer.

Im
agine the LLM

 as a text prediction engine

05

imagine the LLM as a text
prediction engine
Think of a Large Language Model as a text prediction engine.
It takes input text from the user and, based on patterns it
learned from training data, predicts what the next word
should be.

Without additional post-training refinements (called fine-
tuning), the model would merely continue the user’s input—
like completing the next sentence of a story. During fine-
tuning, models learn to interpret inputs as prompts or user
instructions. This enables them to respond in various useful
ways instead of just continuing the user’s text: summarizing,
translating, explaining, and performing other tasks.

Although their behavior has changed as the result of fine-
tuning, LLMs still generate answers through the same
statistical process: constructing responses word by word,
predicting the most probable next word to create a coherent
and meaningful reply. Understanding the inherently
probabilistic nature of LLMs helps you grasp some of their
limitations.

trained
N

ot a

vast

mentio
ned

lear

ned

brai

n

bu
t a

wou
ld

Unl
ike

answ

ers

sens
e

relationsh

ips

ca
lc

ul
at

i
on

s

fro
m

w
ill

help

non-

factual

probabilistic

Whe

n

betw

een

larg

e

have a traditional

An LLM is NOT a vast
database, but a
“brain” that learned
billions of patterns

It is important to understand that an LLM does not
have a traditional memory or vast database of
facts.

When you ask “What is an insurance premium?”, it
can’t look up an exact record storing that
information. Rather it relies on its internal patterns,
parameters, and relationships between words that
it learned from text that mention’s insurance,
premium and connected concepts. When
producing answers, it uses probabilistic
calculations to predict what’s the best next word
in the sentence based on the context of previous
words.

The monkey is an animal

What is the most famous animal
that climbs on trees in the jungle?

animal = 65% 

example = 15% 

insect = 7% 

mammal = 10% 

organism = 3%

The model is choosing the
next most likely word for its
answer. It considers multiple
words with different
probabilities.

Foundation m
odels are w

hat you w
ill build on.

06

foundation models are what you will build on.

what does that mean?
In most real-life LLM projects, the solution will be built on a foundation model. These models are produced by tech companies,
spending immense resources on training and fine-tuning them. For most organizations, it wouldn’t be realistic to train models by
themselves, which is why most decide to pay for a foundation model or use an open-source one. The names that you hear flying
around, such as various GPT versions (OpenAI), Gemini (Google), Llama (Meta’s open-source model), and Claude (Anthropic), are all
such foundation models you can build on. These organizations participate in an arms race, where they keep releasing newer and
newer models, trying to outdo the competition in various performance metrics

Preparing training data

At this point, premier LLMs are
trained on almost all publicly
available human-written content
(terabytes of plain text). There is
not much more out there that
could be used.

1 Pre-Training

Can take up to months. The model
churns through the training data,
optimizing its billions or trillions of
parameters (mathematical weights)
based on the patterns it picks up.
Enormous computational capacity
is required, often involving
thousands of GPUs.

2

Fine-tuning

A team of human experts trains
the LLM how to behave by
providing positive and negative
examples of input-outcome pairs.
This is where a predictive text
completion engine transforms into
a useful robot assistant.

3

the births of a
foundation model

differences between  
various LLM models
The LLM market is expanding rapidly, with major developers
offering multiple model versions simultaneously. When
selecting a model, numerous factors come into play. If you
intend to run it on your own , you'll likely opt for an open-
source model like Meta's Llama. Pricing is another crucial
consideration, as operational costs for cutting-edge models
can escalate significantly as you scale your application. Cloud
LLM providers typically charge based on the number of
tokens (word chunks) processed, which includes both the
input text and the generated output.

While a comprehensive exploration of all aspects of model
selection is beyond this guide's scope, we'll introduce you to
two key performance indicators you'll definitely encounter
when new models are unveiled.

Parameter count: This refers to the number of mathematical
weights in the model. A higher parameter count helps the
model capture more complex patterns and generate more
nuanced, contextually relevant responses. However, more
parameters also increase computational costs for both
training and use.

Not every task requires the sophistication of a large model like
GPT-4, which has an estimated 1.7 trillion parameters—a
smaller, cheaper model can often get the job done.

Context length: Think of this as the model's memory. It
represents the maximum number of tokens (word chunks,
where 100 words is about 130 tokens) the model can process
as input to generate a single response. GPT-4 can handle
around 12 pages of text, while its variant, GPT-4 Turbo,
extends this to 300 pages. That might seem excessive for a
single question, but here's the catch: the input must include
all relevant context—chat history, system prompts, and
information retrieved from various sources (like RAG and
tools). Any information not included in this input will be
unknown to the model as it generates its response.

This limitation explains why RAG architectures use external
vector databases to store vast knowledge repositories. These
databases enable us to input only the relevant information
required to answer a question, ensuring it fits within the
model's limited context window.

The knowledge cut-off date: Once a model's
training is complete, it doesn't learn new
information. It needs to be retrained to learn
from more up-to-date sources.

H
ow

 to use LLM
s in your insurance business?

07

how to use LLMs in your

insurance business?
think about LLMs as a massively impactful new
building blocks for intelligent automation

automation

to create

business

value

make
employees

more
productive

save cost

standardize
service quality improve

access and
reaction

time

enable
scaling

support
decision
making

At its core, the pursuit of Artificial Intelligence is about
automating increasingly sophisticated activities within
business processes. Even forecasting and decision-support
systems are essentially automating human analysis,
supercharged with the massive computational power of
computers. The end result is either the augmentation of
human capabilities or, in some cases, the complete
replacement of humans in certain processes through
automated workflows.

Most AI business cases can be distilled down to three core
benefits: machines can perform activities cheaper, faster, or
with better outcomes—or any combination of these three.
These foundational advantages can be combined to yield
more complex benefits such as scalability (cheaper and
faster) or process standardization (faster with more consistent
outcomes).

As AI technologies advance, the range of processes that can
be automated or augmented continually expands. AI
becomes capable of replacing more facets of human
intelligence or even surpassing it, delivering superior
outcomes in areas like pattern recognition within large
datasets. You might think of it as an ever-expanding box of
building blocks: every new piece (AI capability) allows us to
construct more complex and sophisticated systems. And
LLMs are extremely important new components, redefining
what can be automated.

08

the new building block that can replace
an other layer of human intelligence
We find it a useful framework to think about LLMs as a way to
automate those layers of human intelligence that feel the
most humane and intuitive. Here, we present the most
important new capability building blocks that LLMs give you
to build into your workflows.

LLMs can turn unstructured
data into structured
information and summaries
LLMs can take human-generated content—such as
written claim reports or transcripts of doctors' visits
—and extract information that can be fed into
processes requiring structured input. For example, a
policyholder's written incident report can be
transformed into structured claims data (date, time,
location, type of incident, severity, etc.) and fed into
a claim management system. Or a patient’s complex
medical history documented across multiple
doctors’ notes, lab reports, and hospital transcripts
can be turned into a well-structured, chronological
timeline of the patient’s medical history.

LLMs enable a new
information search
experience
LLMs act like highly skilled librarians or research
assistants, helping humans find answers from vast
bodies of knowledge, including thousands of differently
formatted and structured documents. Traditionally,
humans had to frame queries in ways machines could
understand, but with LLMs, the process is more flexible
and conversational, similar to asking a human librarian.
For example, an adjuster handling a complex
commercial claim could quickly find past similar cases
and relevant regulatory guidelines on the machinery
used onsite at the claimants facilities.

LLMs can emulate human
communication
LLMs can be used to replace human representatives in
a multitude of use cases, or to turn static content
consumption into a human-like conversational
experience. This can mean virtual customer service
agents that are miles ahead of the inflexible chatbots of
yesterday. Another example can be an SME company's
conversational onboarding and risk assessment
experience.

LLMs can act as reasoning
and decision making agents
This capability is the most experimental and
challenging to reliably harness in LLMs, yet it most
closely simulates human intelligence. LLMs can
understand context, interpret nuanced information,
and perform complex reasoning by deciphering
language and meaning. They recognize patterns, draw
inferences, generate insights, and even make
decisions (such as performing a web search). However,
LLM’s “black box” nature makes it difficult to use this
capability for business-critical applications that require
consistent and predictable performance.

Despite these challenges, the potential gains are huge,
possibly leading to human-like automation
orchestrators. This is why much research is focused on
understanding LLMs’ internal workings and creating
stricter controls and guardrails.

OpenAI is clearly pursuing advanced reasoning, a key
feature of their newest model, GPT-o1. It automatically
breaks problems into multi-step, chain-of-thought
reasoning: understanding the question, structuring the
problem, testing strategies, and then summarizing the
answer. By also revealing this process, the model’s
internal logic becomes clearer, reducing its “black box”
nature.

It's important to note that the examples we provide would only work if a Large Language Model is used as part of a larger
system. This in itself is an important lesson: LLMs are not magical solutions, but rather powerful new building blocks that
need to be smartly leveraged within digital tools or data platforms.

The new
 building block

how
 LLM

s are custom
ized to your unique use case?

9

how LLMs are
customized to your
unique use case?
from foundations to a valuable
solution for YOUR business
Using ChatGPT or similar models shows the impressive raw
power of large language models, but without customization,
they are almost never suited for real-world business
challenges. It’s like hiring a smart graduate who still needs to
learn your company’s specific processes and information.
They need training and context to deliver real value.

Despite Generative AI's rapid evolution, certain solution
architectures have begun to gain consistent popularity due to
their practicality. In the following pages, we’ll explore these
options to give you a clear, actionable understanding.

Note: We focus on solutions using cloud bases model-as-a-
services and don't delve into the less common case of on-
premise LLMs.

We'll explore the following concepts, ordered by their
practical impact in typical use cases, starting with the most
significant.

The impactful basics:  
Prompt engineering and model settings

Arming the LLM with external knowledge: 
Retrieval Augmented Generation (RAG)

Arming the LLM with tools: 
LLM Agents

Adapting the model to your context:
Finetuning

Prompt
Engineering
How the machine whisperers work.
A prompt is a written question or request we give to an
LLM. When an LLM produces a response to a prompt, it
also takes into account the context of the request, that
consists of three main elements besides the prompt itself�

� the history of the conversation (think of it as the chat
history�

� the system prompt: the written instructions that govern
the workings of the LL�

� information gathered with tools or from embedded
documents (we will get there in later sections)

System prompts are at the core of a custom LLM solution.
When someone unfamiliar with the technology first
encounters the lengthy instructions behind an LLM
performing complex operations, they're often quite
surprised. Controlling the LLM you'll find elaborate
instructions in plain English. These instructions detail
expected outcomes, desired behavior, contextual
information and things we explicitly want the model to
avoid.

Writing good system prompts requires equal part creativity
and engineering mindset. The engineering part comes in
with the rigorous evaluation and iteration cycle that leads to
an LLM producing accurate results and with the many
established prompting techniques the designer can
leverage.

Model settings
There are several parameters developers can configure in an LLM, most of which impact its probabilistic behavior and
slightly alter its output. One of the most well-known parameters is “temperature.” This controls the model’s creativity: a value
close to 0 makes it consistently choose the most probable next word, resulting in more predictable text. A higher value,
closer to 1, allows it to select less likely words, creating more varied and creative results. For business use cases, we
typically use very low temperatures to ensure the LLM behaves predictably and reliably.

Design your use case
specific custom system

Pre-training and fine-
tuning the foundation
LLM model by its
developer

H
ow

 to use LLM
s in your insurance business?

10

Few Shot Prompting 
In few-shot prompting, the model is provided with a
few examples of desired or undesired outputs.

The idea here is that the model learns from the
examples and provides more accurate answers in
the future.

Zero Shot Prompting: In zero-shot prompting, the
model is given a task without any desirable
examples to guide its response.

“Categorize the following claims as either ‘property
damage’ or ‘bodily injury’:

	1.	A driver breaks their arm in a car accident.

	2.	A tree falls on a house.

	3.	A pedestrian is hit by a car.

Chain-of-thought prompting: 
This technique instructs the model to break down
its answer into logical steps, often improving
reasoning and accuracy.

OpenAI's newest model, GPT o1, focuses exactly
on this kind of step-by-step logical reasoning.
This suggests that the industry pioneer believes
such an approach could be a promising direction
for developing LLMs capable of handling complex
human intellectual challenges.

Prompting techniques

While we won't provide an exhaustive overview of prompting techniques, examining a few popular examples will give you a clearer
understanding of how the field works. These techniques highlight the uncanny human-like nature of LLMs - they would be equally
effective instructions to help a human intern improve their performance on a task.

Instructions
(prompt
engineering)

Uploaded
knowledge
(RAG, embedding)

User prompt

Response

Context
(chat history +
instructions)

Tools & actions
(agent)

“Categorize the following claims as either ‘property
damage’ or ‘bodily injury’.   

Here are some examples to help you understand the
difference.

Example 1: “Claim: A vehicle is damaged after hitting
a fence.

Correct Category: Property damage.”

Example 2: “Claim: A passenger sustains whiplash
after a rear-end collision.

Correct Category: Bodily injury.”

“Categorize the following claim: ‘A car runs into
a lamppost, causing significant damage to both
the car and the lamppost.’

Explain your reasoning step by step before
providing the category.”

Model Output:

“Let’s break this down.

	1.	The claim involves a car hitting a lamppost.

	2.	‘Significant damage’ is mentioned, referring
to the car and lamppost, which are physical
objects.

	3.	There’s no mention of anyone being injured.

	4.	Since the damage is only to property, this
claim is classified as property damage.

Final category: Property damage.”

LLM
 A

gents

11

LLM Agents
using tools opens up the world

The use of tools was a key turning point in humanity’s
evolution from animal to Homo sapiens. Similarly, equipping
LLMs (Large Language Models) with tools can massively
enhance their usefulness. As the name suggest, the idea is
that they become agents, capable of reasoning and acting
autonomously to achieve specific goals. In most practical
cases their decision-making is strictly limited to selecting the
appropriate tool, formulating the right queries, and
incorporating the tool’s outputs into their responses.

This area is still highly experimental, some believing that this
autonomy can be pushed much further as model’s become
better in reasoning and self-reflection. But the use cases we
discuss here represent commonly adopted practices in
custom LLM-based systems.

How Tools Extend LLM
Capabilities

Tools enable LLMs to perform tasks beyond their own
capabilities. These are typically applications that the LLM
interacts with through APIs. The LLM can often choose from
multiple tools based on what appears most effective for
achieving its goal. The main practical challenge with LLM
Agent systems is their speed: the model may spend
considerable time deciding what to do, and then the chosen
tool (such as running a Google search) can also take time to
execute. This time factor is crucial to consider when
evaluating whether an Agent system is a viable solution.

Here are a few popular examples�

� Web Search: LLMs can access up-to-date data by using
tools like Google search (even ChatGPT offers this
feature). This enables the LLM to search the web and use
information found on websites, much like a human would.
However, LLM-generated answers based on web
searches can sometimes miss the mark because selecting
the most credible source and extracting the relevant
information is still a challenge for LLMs. A key insight is
that LLM accuracy improves with structure: If the LLM is
restricted to a pre-vetted range of websites, the results
are often more accurate and reliable. The trade-off, of
course, is less flexibility for questions that fall outside the
scope of those sites�

� Access to Public and Internal Databases: LLMs can be
programmed to access and utilize various databases and
spreadsheets. For instance a travel insurer’s virtual
assistant could retrieve information from a database
containing partner hospitals worldwide and their available
services�

� Access to Specialized Tools: Certain tasks, such as
complex calculations, are best handled by specialized
systems rather than LLMs. For example, an LLM might be
instructed to use the WolframAlpha API for precise
mathematical calculations. An assistant supporting
adjusters could be given access to the policy
management system—with appropriate access control
safeguards in place—to enhance its responses with real-
time policyholder data�

� Additionally, the LLM could be connected to other expert
AI systems, consulting them for specialized knowledge in
specific domains.

user

Database
query

LLM agent

Is connected
to many tools to
execute tasks

Python

Company
database

R
A

G

12

RAG
working from reliable sources of truth

Don’t be put off by it’s technical sounding name: RAG starts to enter the everyday language of talking about LLMs as this is one of
the most often used architecture to create reliable systems that can be used to solve real-world business problems. RAG stands for
Retrieval Augmented Generation: the LLM can search and retrieve information from a an external vector database and use it to
augment the input context of the response it generates.

Vector databases have been used for semantic search for quite some time, and with the rise of LLMs, they became a natural fit to
augment these models’ capabilities. Any kind of textual document can be embedded into a vector database, enabling fast and
efficient retrieval based on meaning (hence semantic) rather than exact word matches. For example, a search for “insured” would
also retrieve relevant information about “policy holders.” The retrieval mechanism finds relevant passages, and the LLM
incorporates this information into its generated response to provide a more accurate and informed answer.

Response
Augmented

promptQuestion

Retrieval
query

Retrieved
texts

Vector database of
domain specific
documents

LLM

RAG increases domain specific accuracy by magnitudes

RAG systems can dramatically enhance the reliability of LLMs. Rather than relying on the model's pre-trained knowledge—
derived from millions of often unvetted sources—we can ensure it works from carefully curated documents. Imagine an insurance
agent answering questions about coverage: would you prefer they rely on hazy memories from a months-old briefing, or consult
the insurance carrier's program manual?

In this example, we'd only need to use a single embedded document: the carrier's program manual (likely divided into thematic
chunks to improve retrieval accuracy). This is a simple case, but more complex systems can work with tens of thousands of
embedded documents—such as all scientific articles on parametric insurance from the last decade. These advanced systems
might even include data pipelines to automatically expand the database as new content becomes available. Sophisticated use
cases employ algorithms and document labeling to help the retrieval mechanism decide which relevant documents to "pull off the
shelf" for searching.

Policy holder

Policy

Agreement

Customer

Insured
Insuree Vector databases represent words or documents as points

in a multidimensional space—often with hundreds or
thousands of dimensions. Points that are close together in
this space have similar meanings.

The illustration shows a simplified version of this concept
in just three dimensions.

Fine-tuning

13

Fine-tuning
the heavy lifting:

retraining the model for your specific context

Fine-tuning models is the most time-consuming and
expensive way of building custom LLM systems.
Fine-tuning means that by feeding additional training
data, a foundation model's parameters (the
mathematical formulas representing all the learned
patterns) irreversibly change, essentially creating a
new unique model version. Even though popular fine-
tuning methods only retrain the last couple of layers
of the neural network (GPT consists of 120 layers!),
this process is still very resource-intensive for three
reasons:  

1 It necessitates building up high-quality labeled
training data consisting of thousands of examples.
For instance, if we want to build an LLM-based
decision-making support system for claim adjusters,
it could make sense to retrain the model with
historical claims data, including inputs and decisions.
This would help it recognize patterns and predict
outcomes more reliably than a generic model. This
exercise would likely start with a month-long process
of organizing and cleaning historic claims data to
make it suitable for training purposes.

2: The actual training process is computation
intensive, as the model updates its internal
parameters while processing the examples. This is
usually an iterative process that consists of training
and validation rounds, until the desired accuracy is
reached.

3. After fine-tuning, you now have a custom LLM
model that needs to be operated exclusively for
you. This means you can't use standard LLM-as-a-
service APIs where the model is shared among
multiple users. You either need to host the model
yourself (which comes with significant infrastructure
and MLOps costs), or opt for a dedicated instance
from an LLM provider. Some platforms, like Microsoft
Azure, offer managed dedicated instances for fine-
tuned models, but this incurs much higher costs
compared to using shared LLM resources.
Additionally, if newer, cheaper, and more capable LLM
models become available and you want to leverage
one of them, you'll need to fine-tune it again.

Why would you fine-tune a
model?

There are many reasons to fine-tune a model, but due
to its cost and complexity, it's usually a "last resort"
when other techniques seem insufficient to produce
acceptable outcomes. The most common reasons to
consider fine-tuning a model are�

� Better handling of Domain-Specific Language
(e.g., medical, legal, financial, insurance). Just
as with human colleagues, if someone isn't
familiar enough with a field's technical terms,
accurately interpreting documents becomes
impossible. Fine-tuning can help an LLM build a
solid grasp of niche domain language. This is
especially important for non-English use cases,
where the LLM's understanding of niche terms in
other languages may be particularly poor�

� Improving Performance on Specific Tasks. An
LLM's accuracy can significantly improve when
performing certain activities, like claim adjustment,
if it receives additional training on proprietary data
that allows it to learn decision-making patterns�

� Enforce certain approach or principles: Humans
don’t always agree on things and viewpoints can
evolve in time. LLMs may be pre-trained on
diverse viewpoints. Fine-tuning can ensure
consistent use of a preferred approach, such as
prioritizing customer satisfaction in disputed
claims. However, effective prompting may often
achieve similar results�

� Updating the model's knowledge: The model's
knowledge cut-off date is always somewhat in the
past, leaving it unaware of certain new
developments (such as the EU’s AI Act). Additional
training can bring its knowledge up to date.

As this is a high-level technology briefing, we won't delve into the possible advantages of fine-tuning smaller models for specific use
cases instead of using more generic large models.

C
hoose the tech that gives the m

ost bang for your buck

14

choose the
tech that gives
the most bang
for your buck

The product development principles of building LLM-
based systems are not different from any other digital
product: the best ROI can be achieved by finding the
simplest possible solution that produces the desired
results. The below diagram reflects our real-life
experiences: in almost every project, we managed to
produce good enough results to automate a process
by building a system around carefully crafted system
prompts, thoughtful use of RAG, and occasionally
augmenting the LLM with tools.

Fine-tuning can significantly increase the cost and
complexity of a project. It not only raises initial
development expenses but also adds to the ongoing
operational costs due to the need for maintaining the
customized model. While in some cases it is
necessary—particularly when domain-specific
expertise or highly customized outputs are required—
our first approach should always be to design the
system without it. There are many ways to make
prompting and the RAG pipeline more sophisticated,
and these methods often yield a much better ROI than
jumping straight to fine-tuning. However, for
specialized tasks, such as in legal, medical, or other
high-precision industries, fine-tuning might offer the
reliability needed, despite the added complexity.

This illustration serves as a visual representation of a conceptual framework rather than an accurate depiction of actual accuracy
improvements.

task
accuracy

100%

0%
zero-shot prompts few-shot prompts RAG + few-shot

prompting
fine-tuning effort/complexity

D
em

ystifying the reliability of LLM
s

15

Businesses began using software to automate and enhance
processes over half a century ago, and today, digital
solutions permeate both our professional and personal lives.
Through these experiences, we’ve come to expect that
computers, aside from occasional bugs, produce predictable
results by following rigid rules. Most traditional software is
deterministic—“if this, then that.” In contrast, Large
Language Models (LLMs) are probabilistic. They generate
responses based on statistical patterns learned from vast
datasets, introducing variability—given the same input, an
LLM might provide different responses. While parameters
like temperature can reduce this variability, perfect
consistency remains difficult due to the complexity of these
models and their probabilistic nature.

LLMs are designed to emulate human communication,
which is naturally flexible, so identical inputs rarely occur in
real-world use. In short, LLMs are less predictable than
traditional software, but far more adaptable. This requires a
shift in mindset—approaching LLMs as flexible, yet
sometimes unpredictable systems, much like managing
human employees.

Humans make mistakes because we aren’t machines. We can
be tired, inattentive, distracted, or misjudge situations due to
cognitive biases. Many of our decisions are based on mental
forecasts, which are inherently probabilistic. When managing
employees, we expect this variability and, in return, value their
ingenuity and flexible problem-solving. Unsurprisingly, as we
strive to create AIs that mimic human intelligence’s flexibility,
we introduce a level of unpredictability into our systems.

To manage the inherent unreliability of LLM-based systems,
there are two key strategies�

�� Choose appropriate use cases where some error or
variability can be tolerated without major impact�

�� Mitigate unreliability by�
�� 	Implementing guardrails, such as content filtering or

human-in-the-loop systems, to ensure the LLM
operates within defined boundaries�

�� 	Rigorously testing and evaluating the model’s
performance�

�� 	Ensuring comprehensive observability to monitor
outputs, identify biases, and continuously improve
reliability.

Choosing the right use case

LLMs aren’t magical tools for every problem. For instance,
more predictable ML solutions are often better for
categorization tasks. When LLMs seem like the right fit,
consider the following�

� What’s the cost of unreliability? This can include
financial, reputational, and legal risks�

� 	What’s the current error rate? If humans perform the
task, we may already accept some level of error�

� 	How do social factors affect our view of mistakes? We
tend to forgive human errors, but machine errors can feel
less acceptable (like with self-driving cars)�

� If more mature technologies can solve the problem,
though with less ideal outcomes, does the LLM solution
offer enough extra value to justify the risks?

demystifying the
reliability of LLMs

No-brainer

va
lu

e
o

f
th

e
so

lu
ti

o
n

impact of unreliability

tantalizing
dilemma

Why bother? don’t touch it

reliable
adjective

Someone or something that is reliable
can be trusted or believed because he,
she, or it works or behaves well in the
way you expect // Cambridge Dictionary

Increasing the reliability of our LLM
 system

16

Factuality issues and hallucination. In most business
contexts, the biggest risk is simply that the LLM's
answer is not based on facts. You've likely heard about
LLMs' tendency to produce hallucinations, so let's
demystify that: a hallucination is an answer generated
without clear factual foundations in the training data or
external sources. Models are fundamentally built to
provide answers and find patterns even if little or none
exists, and they struggle to simply say "I don't know."

However, factual errors can emerge without any
hallucination in play: the LLM may have learned a
pattern from a false source, misinterpreted the question,
or failed to find or comprehend relevant information
when working with external documents.

The greatest risk lies in the variability factor and the
smooth-talking nature of LLMs. If most of their
responses are factually correct, and the incorrect ones
are delivered as plausible-sounding, contextually
relevant explanations, it becomes very difficult for
humans to spot these errors. This is especially true
when incorrect information is "sandwiched" between
factually correct statements (intermittent errors). It's
easy to see how this underlying doubt can undermine
the system's overall credibility and value. (The problem
of hidden defects is not unknown in other areas of
quality assurance.)

1. Ensuring the
model works
from accurate
information

2. Ensuring the
model
processes the
information
correctly

3. Double-
checking
responses by
other systems

4. Users

The solutions:

Most of the work that goes into an LLM based system
aims to ensure factually correct answers—this isn't
something we just mitigate in later stages of a project.
Ensuring factual accuracy is an ongoing process that
spans the entire development lifecycle.

An essential first step for reducing hallucinations is to
instruct the model to admit when it doesn’t have
sufficient information, such as saying ‘I don’t know.’

A next crucial concept is providing "ground truth" to
the model beyond its knowledge from original
training. Depending on the system's scope, certain
ground truth information can be part of the system
prompt. For example, a policy explanation chatbot
could receive a list of industry terms with their exact
definitions to use in its replies.

RAG is a popular and more scalable method for
equipping LLMs with quickly accessible, curated
external information. It provides a strong “ground truth”
by having the LLM search provided documents and
base its answers on verified data, rather than relying on
what it learned during training. This shifts the LLM’s role
to reasoning and communication, while the knowledge
is stored in an external vector database. To build
effective RAG systems, three factors are key: carefully
curating and preparing the knowledge base, optimizing
the retrieval process so the LLM can find relevant
information for each use case, and giving effective
instructions on how to use that information. As with
most LLM systems, this process requires numerous
rounds of evaluation and iteration by the designers.

Post-processing is an advanced method to ensure
factual accuracy. While RAG focuses on supplying the
LLM with the right source of truth before generating the
response, post-processing double-checks the LLMs
responses after it has been generated and before they
are sent to the user. It effectively works as a censor with
veto rights. This is an exciting field that is advancing
fast and post-processors can be all kind of additional
systems, like other AI models.

increasing the reliability
of our LLM system

Reliability in LLMs means how consistently the model provides accurate and expected answers. It reflects how well the
model avoids mistakes, stays factual, and delivers dependable results across different situations. Ensuring reliability
involves using multiple strategies, but the first step is to make reliability measurable—“if you can’t measure it, you can’t
improve it.” At a high level, ensuring reliability means building a robust structure for evaluation, monitoring and
intervention, along with continuous adjustments to gradually improve performance. Just like optimizing human
employees, an LLM system’s outputs can always be refined further, though there is eventually a point of diminishing
returns.

guardrails and other
effective mechanisms
The aptly named guardrails stop our system from straying
into dangerous or off-limits areas. What are these areas?  
To name the main offenders:

Increasing the reliability of our LLM
 system

17

Adversarial prompting/prompt
injection

Similar to social hacking, this involves
tricking the LLM into performing
actions beyond its purpose. The main
issue is that LLMs interpret user
inputs as instructions, not just
questions. With the right malicious
prompts, users can lead them astray,
potentially exposing sensitive
information from an accessible
database or producing responses that
harm a business’s public image. (For
example, imagine the fallout if a
carrier’s chatbot gave advice on
insurance fraud and it was shared on
social media.) This poses a serious
risk for customer-facing or externally
accessible tools.

Solutions:

Clear System Prompts: Craft the system prompt to include explicit instructions
that guide the LLM to refuse inappropriate requests politely and avoid sharing
sensitive information.  

Input validation: A separate, specialized system component can validate and
filter incoming user inputs, specifically looking for signs of adversarial
prompting. As with fraud detection, flagging false positives can be extremely
annoying for users, so these systems must be carefully configured to avoid
being overreactive.

Secure design: As with any other software, security best practices should be
followed. A crucial principle is to connect the system only to APIs that contain
data essential for performing its duties (principle of least privilege).

Post-processing: Similar to ensuring truthfulness, responses can be analyzed
and potentially intercepted by another system before they're sent to the user.
This check ensures they don't contain sensitive information or content irrelevant
to the use case.

Harmful or risky answers

There are topics we want the LLM to
stay clear of. This generally includes
anything that goes beyond its scope
(an insurance bot shouldn't give
healthcare advice), but can also
include landmine topics within its own
specialized field. Users are not aware
of what we consider off-limits
because of legal, reputational, or
operational risks and they may
prompt the LLM to discuss it. There
are also obvious behaviors that we
want the system to avoid, like using
toxic language or being passive-
aggressive.

Solutions:

The solutions strategies don’t differ much from the previously introduced
methodologies.

Prompting: The system prompt gives the LLM its marching orders, often
specifying the conversation’s permitted scope and topics to avoid. As long as
users don’t intentionally try to mislead it (see adversarial prompting), this keeps
the LLM on track in most cases.

Post-processing: Various tools can verify the LLM’s answer before it’s sent to
the user. This may involve another LLM focused on staying on-topic, specialized
tools like Nemo Guardrails, or traditional NLP models checking for certain
expressions (like profanity). If necessary, the LLM can be asked to revise its
response, or a predefined reply can be sent. Keep in mind, the model’s fine-
tuning by it’s developer already aims to minimize harmful content, so LLMs
come with some built-in decorum.

Biases 
In an LLM, biases happen when the
model learns patterns from its training
data that favor certain ideas, groups,
or perspectives. This can cause the
model to produce unfair or
unbalanced responses, such as
reinforcing stereotypes or overlooking
important viewpoints. As a result, its
answers might reflect the same
biases present in the data it was
trained on.

Solutions  

AI Ethics is a rapidly expanding field and companies must pay increasing
attention to this aspect to avoid reputational risks and potential legal
consequences. Ensuring that training data comes from varied and balanced
sources is primarily the foundation model developer's responsibility. However, if
we fine-tune the model with our own data, we must pay attention to the same
aspect.

Even without fine-tuning, biases can emerge from system design choices, such
as system prompt formulations. Extensive testing and evaluation for biases are
required on every LLM-based system. Once a bias has been identified, the
previously discussed strategies can be used to set up effective guardrails for its
mitigation.

E
valuating the perform

ance of LLM
s

18

evaluating the performance
and accuracy of LLMs

� Reliability and factuality: Can we trust the answers
the system provides? To figure out why it might give
incorrect answers, we need to look at how the
system works step by step. How well does it find
information from external sources? Are we selecting
the most relevant pieces of information? Does the
LLM use this information effectively to produce
helpful responses? We can measure and improve
each of these aspects�

� Relevance: Do the system’s responses truly address
the user’s questions and context? Are the outputs
really meaningful responses?

� Coverage: Can the system provide useful responses
across all scenarios within the target use cases�

� Fluency and Coherence: Are the LLM’s answers easy
to understand? The responses should be well-written
and make sense to the user without confusion�

� Conversation Relevancy: The system's ability to
remember and utilize context, such as the chat
history, which is essential for maintaining genuine
conversations. 

There are numerous additional aspects worth evaluating
especially focused on safety, and ethical operations.

How do we define a useful LLM system?

Performance in IT often refers to processing speed and response time. These can be important for LLM systems as well, because
long response times can radically degrade the user experience. But when we talk about an LLM system’s performance, we’re not
just talking about speed, we are more interested in accuracy. We break down what makes it a “valuable business tool” into specific
qualities that we can measure and improve.

Below are some key qualities we often consider to measure accuracy, but this list is far from exhaustive. Each of these can be
further detailed into specific contributing factors that we can measure and optimize—a process called LLM evaluation.

We can break down the performance and accuracy
evaluation of an LLM-based system into three types of
testing mechanisms�

�� Expert or internal evaluation performed by humans:
The team working on the tool continuously tests the
system's outputs and adjusts the design to generate
more useful responses. By formulating structured test
cases (input, expected output, actual output) and
tracking the previously explained factors, this process
evolves into a structured scientific activity�

�� Automated evaluation with specialized tools: An
increasing number of tools are available to run
automated tests that continuously evaluate the system
down to very granular performance indicators.
DeepEval is a promising analytical tool with sound
scientific foundations that we have successfully used
in past projects.

�� End-user feedback loop: If you’ve used ChatGPT,
you’ve likely seen the thumbs-down option for
unsatisfactory responses. Similar features can be
added to any LLM tool. For internal tools or early
versions, feedback can be more detailed, with options
to select failure categories or add comments. The
team should analyze this input to improve response
quality. Creating value for end users is the ultimate
validation of the solution.

Despite rapid advancements in automated evaluation of
LLM-based systems, with new tools and paradigms
emerging monthly, human evaluation remains by far the
most crucial at this stage.

LLMs aim to automate and augment the most
sophisticated areas of human intelligence. Only
humans can be the final judge of their most crucial
success metric: whether the outputs are meaningful
and valuable for the target use case.

authors

supercharge.iohello@supercharge.io

seize the opportunity that LLMs
offer to rethink your operations
and communication channels

Large Language Models are changing
reality as you read this. Let’s work together
on an action plan on how to supercharge
your business with generative AI.

Supercharge is an award-winning digital innovation partner. We craft digital strategies,
design delightful journeys and build robust, AI-enabled software to create impact in
your business with unparalleled speed and quality.

Balazs Fonagy

Chief Strategist  
@Supercharge

Adam Kovacs

AI Architect  
@Supercharge

Bence Lukacs

Experience Design Lead 
@Supercharge

https://www.supercharge.io
mailto:hello@supercharge.io

